IT Pro is supported by its audience. When you purchase through links on our site, we may earn an affiliate commission. Learn more

Microchip scoops NASA's $50m contract for high-performance spaceflight computing processor

The new processor will cater to both space missions and Earth-based applications

Graphic of a processor in a circuit board

NASA has teamed up with Microchip Technology Inc for a high-performance spaceflight computing (HPSC) processor that will aid the American space agency’s upcoming missions while adding to existing spacecraft capabilities.

Notably, the three-year deal will see Microchip design an HPSC processor that will outperform the computational capacity of current space flight computers by at least 100 times. The distinction will facilitate NASA's future lunar and planetary exploration missions.

Most importantly, the new processor will enable the processing power to rise, fall or freeze based on advancing space operational requirements for optimal power consumption. 

As for Earth-related applications, NASA said the HPSC processor could be useful for commercial systems on Earth requiring mission-critical edge computing in the same vein as space missions that can continue operating safely even if a component abruptly fails.

Industrial automation, edge computing, time-sensitive ethernet data transmission, artificial intelligence, and IoT gateways could all benefit from the new processor, according to NASA.

"This cutting-edge spaceflight processor will have a tremendous impact on our future space missions and even technologies here on Earth," said Niki Werkheiser, director of technology maturation within the space technology mission directorate at NASA Headquarters in Washington. 

Related Resource

An EDR buyer's guide

How to pick the best endpoint detection and response solution for your business

Whitepaper cover with title and image of grey and green blocks, with the green ones connected to each otherFree Download

"This effort will amplify existing spacecraft capabilities and enable new ones and could ultimately be used by virtually every future space mission, all benefiting from more capable flight computing," added Werkheiser.

NASA's principal technologist for advanced avionics, Wesley Powell, commented, "Our current spaceflight computers were developed almost 30 years ago.” 

"While they have served past missions well, future NASA missions demand significantly increased onboard computing capabilities and reliability. The new computing processor will provide the advances required in performance, fault tolerance, and flexibility to meet these future mission needs."

Featured Resources

Accelerating healthcare transformation through patient-centred medtech solutions

Seize the digital transformation opportunities to streamline patient care and optimise patient outcomes

Free Download

Big payoffs from big bets in AI-powered automation

Automation disruptors realise 1.5 x higher revenue growth

Free Download

Hyperscaler cloud service providers top ten

Why it's important for companies to consider hyperscaler cloud service providers, and why they matter

Free Download

Strategic app modernisation drives digital transformation

Address business needs both now and in the future

Free Download

Most Popular

Empowering employees to truly work anywhere
Sponsored

Empowering employees to truly work anywhere

22 Nov 2022
Unpatched Exchange servers could be behind Rackspace's ransomware attack
zero-day exploit

Unpatched Exchange servers could be behind Rackspace's ransomware attack

7 Dec 2022
What we can learn from the supercomputer revolution
Sponsored

What we can learn from the supercomputer revolution

1 Dec 2022