IBM unveils the world’s first quad-core AI accelerator chip

The chip can be scaled for commercial use in hybrid-cloud environments

IBM logo on a brown background

IBM has unveiled the world’s first quad-core artificial intelligence (AI) accelerator chip, built using seven-nanometer (7nm) MOSFET technology.

The company says it has optimized the novel chip for low-precision workloads with support for many AI models.

"In a new paper presented at the 2021 International Solid-State Circuits Virtual Conference (ISSCC), our team details the world’s first energy-efficient AI chip at the vanguard of low precision training and inference built with 7nm technology," said IBM researchers Ankur Agrawal and Kailash Gopalakrishnan. 

"Through its novel design, the AI hardware accelerator chip supports a variety of model types while achieving leading edge power efficiency on all of them."

AI accelerators are specialized hardware designed to enhance AI applications’ performance, including deep learning, machine learning, and neural networks. They use in-memory computing or low-precision arithmetic, resulting in faster execution of large and complex AI algorithms

IBM claims its new AI accelerator chip is the first to include an ultra-low precision hybrid 8-bit floating-point (HFP8) format for training deep learning models in a silicon technology node (7 nm EUV-based chip). The chip can also self-maximize its performance by slowing down during high-power computation phases, thanks to an integrated power-management feature.  

Related Resource

Six reasons to accelerate remote asset monitoring with AI

How to optimise resources, increase productivity, and grow profit margins with AI

Why you should accelerate remote access monitoring with AI - whitepaper from IBMDownload now

Furthermore, IBM said its AI chip “routinely achieved more than 80% utilization for training and more than 60% utilization for inference” as compared to mainstream GPU utilizations, which are typically below 30%.

According to IBM, the chip technology can be scaled and deployed commercially to support large-scale deep learning models in the cloud.

“Our new AI core and chip can be used for many new cloud to edge applications across multiple industries. For instance, they can be used for cloud training of large-scale deep learning models in vision, speech and natural language processing using 8-bit formats (vs. the 16- and 32-bit formats currently used in the industry),” said IBM.

“They can also be used for cloud inference applications, such as for speech to text AI services, text to speech AI services, NLP services, financial transaction fraud detection and broader deployment of AI models in financial services.”

Featured Resources

Consumer choice and the payment experience

A software provider's guide to getting, growing, and keeping customers

Download now

Prevent fraud and phishing attacks with DMARC

How to use domain-based message authentication, reporting, and conformance for email security

Download now

Business in the new economy landscape

How we coped with 2020 and looking ahead to a brighter 2021

Download now

How to increase cyber resilience within your organisation

Cyber resilience for dummies

Download now

Recommended

US creates AI data-sharing task force
artificial intelligence (AI)

US creates AI data-sharing task force

11 Jun 2021
FTC warns companies to use AI responsibly
artificial intelligence (AI)

FTC warns companies to use AI responsibly

21 Apr 2021
ISG and Cognigy partner on automated conversational AI
artificial intelligence (AI)

ISG and Cognigy partner on automated conversational AI

10 Jun 2021

Most Popular

Best paying tech jobs of 2021
Careers & training

Best paying tech jobs of 2021

7 Jun 2021
OnePlus 9 Pro review: An instant cult classic
Hardware

OnePlus 9 Pro review: An instant cult classic

7 Jun 2021
Mythic launches power-sipping AI chip
Hardware

Mythic launches power-sipping AI chip

8 Jun 2021