What is ethical AI?

How do we define what a 'good outcome' is when it comes to algorithms?

Robotic and human hands meeting

When we consider the term ethical AI, it may be too easy to fall into the trap of imagining a Skynet-type apocalyptic descent in which humans are enslaved by machines. While the standards of artificial intelligence (AI) technology are ever-improving, the idea that machines can realistically achieve a state of consciousness is better left to Hollywood.

Many common applications of AI are comparatively mundane but work wonders to augment our day-to-day lives. Examples may include the technology embedded in virtual assistants such as Amazon’s Alexa or Google Home; natural language processing (NLP) is adopted in these platforms to boost the quality of communication with users. There are countless other common uses of AI from the automation of office tasks to big data analytics.

AI in its current form has so much potential, with academics and researchers working to devise new applications and approaches for businesses to take advantage of. As the AI landscape continues to expand and evolve, however, it’s critical that discussions around ethics are at the centre of the applications that may threaten to infringe on our essential data protection and privacy rights. Facial recognition is the perfect example of this, with its use by law enforcement deemed highly controversial.

One of the most widely-publicised issues is the lack of visibility over how algorithms arrive at the conclusions they do. It’s also difficult to know whether these results are skewed by any underlying biases embedded within the datasets fed into these systems. There may be a conscious effort to develop AI that renders human-like results, but it remains to be seen whether these systems can factor in the ethical issues that we deliberate over when making decisions ourselves.

The facial profile of a woman being analysed by facial recognition technology

Facial recognition is deemed a contentious application of AI technology


It's because of these questions that we arrive at the idea of ethics – namely, the moral principles that govern the actions of an individual or group, or, in this case, a machine. This is to say that AI ethics does not simply concern the application of the technology – the results and predictions of AI are just as important.

Defining a 'good outcome'

AI systems represent a divergence away from traditional computers that base their results on mathematical principles. If you enter 4 + 4 into a computer, the answer should always be 8, regardless of how sophisticated it is. With app development, new software can be created to fit a variety of needs, but it is always based on a prebuilt coding language. In that sense, there is no ambiguity on what the result should or should not be.

Let's consider the example of a system designed to establish how happy a person is based on their facial characteristics. A system would need to be trained on a variety of demographics to account for all the combinations of race, age and gender possible. What's more, even if we were to assume the system could account for all of that, how do we establish beyond doubt what happiness looks like?

Bias is one of the major problems with artificial intelligence, as its development is always based on the choices of the researchers involved. This effectively makes it impossible to create a system that's entirely neutral, and why the field of AI ethics is so important.


Roboethics, or robot ethics, is the principle of designing artificially intelligent systems using codes of conduct that ensure an automated system is able to respond to situations in an ethical way. That is, ensure that a robot behaves in a way that would fit the ethical framework of the society it's operating in.

Related Resource

AI 360: Hold, fold, or double down?

How AI can benefit your business

How AI can benefit your business - whitepaper from GenpactDownload now

Like traditional ethics, roboethics involves ensuring that when a system that's capable of making its own decisions comes into contact with humans, it's able to prioritise the health and wellbeing of the human above all else, while also behaving in a way that's considered appropriate to the situation.

Roboethics often features heavily in discussions around the use of artificial intelligence in combat situations, a popular school of thought being that robots should never be built to explicitly harm or kill human beings.

While roboethics usually focuses on the resulting action of the robot, the field is only concerned with the thoughts and actions of the human developer behind it, rather than the robot itself. For that, we turn to machine ethics, which is concerned with the process of adding moral behaviours to AI machines.

Arguments against ethical AI

Some industry thinkers have, however, attacked ethical AI, saying it's not possible to treat robots and artificial intelligence as their human counterparts.

Famed computer scientist Joseph Weizenbaum argued since the 60s that non-human beings shouldn't be used in roles that rely on human interaction or relationship building. He said that roles of responsibility such as customer services, therapists, carers for the elderly, police officers, soldiers and judges should never be replaced by artificial intelligence – whether physical robots or any other system that would go against human intuition.

In these roles, humans need to experience empathy, and however human-like the interactions with artificial intelligence are, they will never be able to replace the emotions experienced in scenarios where these job roles exist.

Political reaction to ethical AI

The UK is taking a central role in the evolution of ethical AI. Former prime minister Theresa May pledged to develop a Centre for Data Ethics and Innovation that make sure society is prepared for data-driven technologies.

"From helping us deal with the novel ethical issues raised by rapidly-developing technologies such as artificial intelligence, agreeing best practice around data use to identifying potential new regulations, the Centre will set out the measures needed to build trust and enable innovation in data-driven technologies," May said. "Trust underpins a strong economy, and trust in data underpins a strong digital economy."

In April, the European Commission published a set of guidelines for the ethical development of artificial intelligence, chief among these being the need for consistent human oversight.

Business reaction to ethical AI

Google was one of the first companies to vow that its AI will only ever be used ethically – i.e. it will never be engineered to become a weapon. The company's boos, Sundar Pichai said Google won't partake in AI-powered surveillance either.

Google published its own ethical code of practice in June 2018 in response to widespread criticism over its relationship with the US government's weapon programme. The company has since said it will no longer cooperate with the US government on projects intending to weaponise algorithms.

Amazon, Google, Facebook, IBM, and Microsoft have joined forces to develop best practice for AI, with a big part of that examining how AI should be, and can be, used ethically as well as sharing ideas on educating the public about the uses of AI and other issues surrounding the technology.

The consortium explained: "This partnership on AI will conduct research, organise discussions, provide thought leadership, consult with relevant third parties, respond to questions from the public and media, and create educational material that advance the understanding of AI technologies including machine perception, learning, and automated reasoning."

Following a disastrous trial with its online chatbot Tay in March 2016, Microsoft has since taken steps to overhaul its internal policies regarding the development of AI, particularly when involving sensitive use cases. This includes the creation of the Office for Responsible AI, which is in charge of recommending and implementing AI policy across the business, and the so-called ‘Aether’ (AI, Ethics and Effects in Engineering and Research) Committee, a non-binding advisory body made up of key stakeholders.

Microsoft had also cooperated with the European Union on the development of an AI regulatory framework, a draft version of which was finally published on 21 April 2021. Under the proposed regulations, EU citizens will be protected from the use of AI for mass surveillance by law enforcement, which was ruled unlawful in the UK last year. The use of AI in recruitment, credit score evaluation, as well as border control management will be also be classified as "high-risk” due to discrimination concerns, while systems that allow ‘social scoring' by governments will be banned.

Companies that break the rules would face fines up to 6% of their global turnover or €30 million, whichever is the higher figure - slightly higher than the already steep fines imposed by GDPR. The European Commission will now have to thrash out the details of the proposed regulations with EU national governments and the European Parliament before the rules can come into force, a process that can take a number of years.

Meanwhile, in the UK, the Trades Union Congress (TUC) is calling for increased legal protections for workers as the use of AI for employee-related decision-making, such as hiring and firing, becomes more common in the workplace. Recent examples of this in action include claims made by former Uber Eats workers, who accused the food delivery service of unfair dismissal after the facial identification software used by the company was incapable of recognising their faces. The system, known as a “photo comparison” tool, asks Uber couriers and drivers to take a photograph of their face, which is then authenticated using AI by comparing it to a photograph in the company’s database. Hence, according to the TUC, employers seeking to use “high-risk” AI should be legally obligated to consult with trade unions.

Featured Resources

Modern governance: The how-to guide

Equipping organisations with the right tools for business resilience

Free Download

Cloud operational excellence

Everything you need to know about optimising your cloud operations

Watch now

A buyer’s guide to board management software

How the right software can improve your board’s performance

The real world business value of Oracle autonomous data warehouse

Lead with a 417% five-year ROI

Download now


What are the pros and cons of AI?
machine learning

What are the pros and cons of AI?

30 Nov 2021
The IT Pro Panel
Business strategy

The IT Pro Panel

29 Nov 2021
A guide to cyber security certification and training
Careers & training

A guide to cyber security certification and training

9 Nov 2021
Why it's the perfect time to rethink recruitment
Business strategy

Why it's the perfect time to rethink recruitment

10 Sep 2021

Most Popular

How to boot Windows 11 in Safe Mode
Microsoft Windows

How to boot Windows 11 in Safe Mode

6 Jan 2022
How to speed up Windows 11
Microsoft Windows

How to speed up Windows 11

7 Jan 2022
Dell XPS 15 (2021) review: The best just got better

Dell XPS 15 (2021) review: The best just got better

14 Jan 2022